Skip to main content

Incredibly tough challenges from competitors

Tinker tailor tourist spy Forums Bureau of Security and Signals Intelligence Forum Incredibly tough challenges from competitors

Viewing 15 posts - 1 through 15 (of 22 total)
  • Author
    Posts
  • #51910
    Madness
    Participant

    Is everyone bored waiting for the next challenge? Here are some Vigeneres to tide you over.

    This one is hard only because it is very short.

    TVMAHHIBJGBMNEOSMMAPWFTZXMHSSUQLIPEOLB

    This one is encrypted twice. You have to find both keys (put them in alphabetical order when you claim victory).

    DCFDUFDZVONUGMZNORSNMCUVLYSYGENSBVUFRZUNYWZGBWBCLEQXQKYNUUSPLMQZUVTMAAMVNZEUKKCSGGCM
    PELKNTQSAZTQQDSHMEKRXNIYPMKXCBOJOVTHCSBOOGQZOEFOHDLXHODOJSUPPYPVBTYBRNVODOGZIXHSTWYI
    OTGPGKHUVNOAJTWIKOTXZPISUMWNMEZOTSPHSRJYGGYQHZYUGZJAAUGUXWRSDHGCVMWHZFLXPCB

    And finally, this one is encrypted THREE times. Good luck.

    ABDBVCDKRAVUUCBZXNJFDVPKXKRCHXZLEAXKTVCMGCJCKKHZUORLFJQXRBUWZSOMZQCMDTYLNEBIKKUJNFNX
    FTODSYPHBTVZAWTBKAOAAWFKMBCEPKCKYHLOWACYPLTLPUJHUIJICLIFLNPIJTHSCQKYYIMDNZPNBAWPRGVV
    WWQZKTPXXCFMRDNIPPIPFIHNXKPMYQOEKNELLAZMXOZITGTTYPZCVFJDOGNOTGFUEHDSSBVXZLEAPQKYRZKA
    WVHNOKZDXOBJBTUPKXFKDFOIZBJCKURVPTRMWDVXUZBZTZRETZQWENAOETNPZIIAUKSLXYBUUVNKUXMVQNZS
    OBLZLSNRXTOPOHKNPELMOBPVSHKQOSZTNUSYDHDYBQWIKYRPQPNNRZHGDJITICPPKAZTQYJHHTOGQFVAABLW
    CCZAFRMEVVKCPVCWWSOTJUBANYHONBULFJQLIVERFERJPHQUVAOUBXYMOLHXTMXRJOLUDNLQRTZOPKOKPNCP
    YSDDBKEPZKMIFWLAUSBPWWFRCYTLKNUWYIXOYVPCNVSBGCLWPLXXFBVQPNWXZEOBSSFFIGTZVMVUOJOMJTMU
    HBBJTLRCAKYPHDQVLCPVPWKKOIJFFNRAOAKMOMCMLMZITARCNOYNVHDMYAROUUPKCTAKWBVOBLEPEBPRSECA
    RIYYLEAPSABFZFDBHVHTOXELWZPRUUDIQOWHIKWXSFVGUHUESPZZMBMFTBKKIUAILGSFPEQIUEMVANSHXFPT
    VBVOEZYCYGJEVSECOLWSTLGKFHYWYSZRYVMDQREAPWOGXFJXCZNVLWMLBTHCRVLABPMTGFWAJXVCQHWMYINW
    VHRWRHLOKITUMTOYFCJSQHMXCISZNBUUBWKXEIWBQYNKDHFRSXESTKQUOKQONMLXYBCNENGWJAGSNZSCMXSM
    FVUZRHZYQBEHNZXLULZPVMGMSPXEPUOMYHLYLAKVEIKLMNIFVXCWBIJVPNPELTHOVKEJFNVRKNJVXEPWZLCH
    FBPMVZLUNXGIKNGRKIGVBMBOATGMYXBSDRGGKMYANCVXHPDCYDTJNQSQDDSQBGSLVMNYSPWQZAJLIVIBIYYC
    REQTVFTZGOTKBQYRNDFQQEXORBTUKKHDJSNQLVBNOKMQAMYOFJTEXMYBWWSPDEZTLGSKTQWXYMUMKYWJKUTP
    TQHGWGRVQBXXOSEYPMYHEBEYOJIAHPZCVEOBHIXZFYHQKLKWJMLDNZDXNIXLIEFYXZFACZIYRXZTEXMCSTSH
    HMJTUQIDNZLHPADZSDBGJVPLLGASQCKJXQDEMCXAYNKPKEOKOZOSTSADWQGAWHYSRFKGZEIQNHAIWSXDAQAQ
    NZNRHGCLFLIKGSVMYOHRSLAETXGPVZUGXDOJUYBGXPZFHTWKVXEDQODNRMIRVVABXKTQVDTVAZJJRWPMNUKO
    BKLEVWCFRCZQREZBXVEPLONJOUWMQQUXJQRHYEOINWZJQDWDEXJOYYBBDZSDJBOPNAJXSQCISWALLTXBJNJL
    HZXMRGSVIPYZFRHXIATQDROKJBLMZJWDDEARYBPYIPWJIHIVELPVINSZMQTNPJWVBTFRDCLKZXUVZRYWYUDJ
    HIXSSJRWYMYKBMLNWRDYMKCSXTCLUEZDEIYHQXZZEHFPXFIPQWOCHKGZUVKAMIEOLWLGOGQFLVGHQWHVKQHB
    PHDRRHOCUPKIGBOINDJFUOZFTXSQQKJWKPOXMSZXPACYOKWYHIDOXDADAXEPYDSPGVVZHGULXCYUNQIDVIRX
    OBDOSQYATIGJLHKIXFDDSZWSVXBZDKMTLGAXCXEGLOJETBIPHXIQJQGDSUZMSTIYCDZJGZHLGWZYSPEINUCL
    QIANKCRMWMRIQPCZFQRKPCXZUPFFMQPKMDMMAMUBCCUVDXEVVOLOTINXKMFDJIFSTNSKADNLFWASEXMKHOYN
    CRQXVRYZYIMRUZAADTJHWLKOGICSEJATWBCZYIMIBVMPLZRKZYMGYHCB

    p.s. If you get nonsense for the keywords, then you haven’t found the right ones yet.

    #50414
    Madness
    Participant

    I just noticed that the next challenge is TWO WEEKS away. This rightly should be mentioned under the BUGS thread.
    Anyway, y’all will probably be bored to tears during the wait, so I will post here an article about Bellaso that
    was rejected by the ACA because they said 1. they don’t take anonymous submissions (I refused to give my human
    name) and 2. their readers WOULD NOT BE INTERESTED. What?! Yeah, they said that.

    The “new” Bellaso cipher
    madness
    2020-09-17 (and after)

    Recently, the original cipher of 1552 by Giovan Battista Bellaso was uncovered in Venice, Italy. It used
    the 22-letter Italian alphabet of the time, according to this tableau:

    key   plaintext alphabet
       abcdefghilmnopqrstuxyz
     A NOPQRSTUXYZABCDEFGHILM
     E ZNOPQRSTUXYBCDEFGHILMA
     I YZNOPQRSTUXCDEFGHILMAB
     O XYZNOPQRSTUDEFGHILMABC
     U UXYZNOPQRSTEFGHILMABCD
     B TUXYZNOPQRSFGHILMABCDE
     C STUXYZNOPQRGHILMABCDEF
     D RSTUXYZNOPQHILMABCDEFG
     F QRSTUXYZNOPILMABCDEFGH
     G PQRSTUXYZNOLMABCDEFGHI
     H OPQRSTUXYZNMABCDEFGHIL
     L MLIHGFEDCBAZYXUTSRQPON
     M AMLIHGFEDCBYXUTSRQPONZ
     N BAMLIHGFEDCXUTSRQPONZY
     P CBAMLIHGFEDUTSRQPONZYX
     Q DCBAMLIHGFETSRQPONZYXU
     R EDCBAMLIHGFSRQPONZYXUT
     S FEDCBAMLIHGRQPONZYXUTS
     T GFEDCBAMLIHQPONZYXUTSR
     X HGFEDCBAMLIPONZYXUTSRQ
     Y IHGFEDCBAMLONZYXUTSRQP
     Z LIHGFEDCBAMNZYXUTSRQPO

    In such a tableau, a plaintext letter is enciphered to the ciphertext letter under it in the row labeled by a
    key letter. Key letters are from a keyword, which is the cipher’s key, in a periodic way. We will see an
    example shortly, when we encipher a message with a modernized version. Notice that each of the
    ciphertext alphabets is reciprocal, i.e., encipherment with any of them is the same as decipherment. The
    same is true for each cipher in this paper.

    The following year, Bellaso published a revised cipher. He removed the rotated reversed
    ciphertext alphabets, leaving eleven. Not to restrict the choice of keyword, he doubled the assignment
    of key letters to each alphabet. The new tableau follows.

    key    plaintext alphabet                        
        abcdefghilmnopqrstuxyz
    A/B NOPQRSTUXYZABCDEFGHILM
    C/D TUXYZNOPQRSFGHILMABCDE
    E/F ZNOPQRSTUXYBCDEFGHILMA
    G/H STUXYZNOPQRGHILMABCDEF
    I/L YZNOPQRSTUXCDEFGHILMAB
    M/N RSTUXYZNOPQHILMABCDEFG
    O/P XYZNOPQRSTUDEFGHILMABC
    Q/R QRSTUXYZNOPILMABCDEFGH
    S/T PQRSTUXYZNOLMABCDEFGHI
    V/X UXYZNOPQRSTEFGHILMABCD
    Y/Z OPQRSTUXYZNMABCDEFGHIL

    This eleven-alphabet Bellaso cipher of 1553 was incorrectly attributed to Giovanni Battista
    della Porta. The modern version, now called the “Porta cipher,” comes in two varieties. Their tableaux
    are combined here:

    key (version)  plaintext alphabet                       
     1   2  abcdefghijklmnopqrstuvwxyz
    A/B A/B NOPQRSTUVWXYZABCDEFGHIJKLM
    C/D Y/Z OPQRSTUVWXYZNMABCDEFGHIJKL
    E/F W/X PQRSTUVWXYZNOLMABCDEFGHIJK
    G/H U/V QRSTUVWXYZNOPKLMABCDEFGHIJ
    I/J S/T RSTUVWXYZNOPQJKLMABCDEFGHI
    K/L Q/R STUVWXYZNOPQRIJKLMABCDEFGH
    M/N O/P TUVWXYZNOPQRSHIJKLMABCDEFG
    O/P M/N UVWXYZNOPQRSTGHIJKLMABCDEF
    Q/R K/L VWXYZNOPQRSTUFGHIJKLMABCDE
    S/T I/J WXYZNOPQRSTUVEFGHIJKLMABCD
    U/V G/H XYZNOPQRSTUVWDEFGHIJKLMABC
    W/X E/F YZNOPQRSTUVWXCDEFGHIJKLMAB
    Y/Z C/D ZNOPQRSTUVWXYBCDEFGHIJKLMA

    Let’s work through an example with both versions of the modern Porta cipher. Here is a short
    message, which we encipher with the keyword PORTA.

    plaintext:   GIOVANNI DELLA PORTA PUBLISHED IN FIFTEEN SIXTY-THREE
    key letters: PORTAPOR TAPOR TAPOR TAPORTAPO RT APORTAP ORTAP ORTAP
    version 1:   NPGMNGGQ ZRSSV GBKMV GHVSQJUYX QE SPZLNRG LQBGE MPIRY
    version 2:   ZOJENHHN URRRS LBLAS LHURNBUXW NJ SOYBVRH MNGGF AZARX

    We propose that the original Bellaso 1552 cipher be modernized for use by cryptography
    enthusiasts. Expanding the alphabet to include all 26 letters of the modern English alphabet, and
    reassigning key letters to the ciphertext alphabets in a methodical order gives us the following tableau.
    Notice again how each of the ciphertext alphabets is reciprocal. The full cipher is also reciprocal:
    encipherment and decipherment are the same process.

    key     plaintext alphabet
       abcdefghijklmnopqrstuvwxyz
     A NOPQRSTUVWXYZABCDEFGHIJKLM
     B ZNOPQRSTUVWXYBCDEFGHIJKLMA
     C YZNOPQRSTUVWXCDEFGHIJKLMAB
     D XYZNOPQRSTUVWDEFGHIJKLMABC
     E WXYZNOPQRSTUVEFGHIJKLMABCD
     F VWXYZNOPQRSTUFGHIJKLMABCDE
     G UVWXYZNOPQRSTGHIJKLMABCDEF
     H TUVWXYZNOPQRSHIJKLMABCDEFG
     I STUVWXYZNOPQRIJKLMABCDEFGH
     J RSTUVWXYZNOPQJKLMABCDEFGHI
     K QRSTUVWXYZNOPKLMABCDEFGHIJ
     L PQRSTUVWXYZNOLMABCDEFGHIJK
     M OPQRSTUVWXYZNMABCDEFGHIJKL
     N MLKJIHGFEDCBAZYXWVUTSRQPON
     O AMLKJIHGFEDCBYXWVUTSRQPONZ
     P BAMLKJIHGFEDCXWVUTSRQPONZY
     Q CBAMLKJIHGFEDWVUTSRQPONZYX
     R DCBAMLKJIHGFEVUTSRQPONZYXW
     S EDCBAMLKJIHGFUTSRQPONZYXWV
     T FEDCBAMLKJIHGTSRQPONZYXWVU
     U GFEDCBAMLKJIHSRQPONZYXWVUT
     V HGFEDCBAMLKJIRQPONZYXWVUTS
     W IHGFEDCBAMLKJQPONZYXWVUTSR
     X JIHGFEDCBAMLKPONZYXWVUTSRQ
     Y KJIHGFEDCBAMLONZYXWVUTSRQP
     Z LKJIHGFEDCBAMNZYXWVUTSRQPO

    Here is a short example of the encipherment of a message with this cipher. The keyword is PLAGIA.

    plaintext:   BELLASO BEAT YOU TO IT BY ELEVEN YEARS
    key letters: PLAGIAP LAGI APL AG IA PL AGIAPL AGIAP
    ciphertext:  ATYSSFW QRUB LWF GH NG AJ RSWIKL LYSES

    Finally, here are some ciphertexts, in order of increasing difficulty, for interested readers to try
    breaking.

    CBURTNMJIEUWLLQJIRJAQHXAJFIWNUJHHFNORFTAONJUEQZJJOOXCNPCIWNOKTSNZALPW
    PLIXZDWXINAOIGVWSIXIGJASUAMXJKJYIYZAQDGFYJRCGNOIYCTNLTQTAMAEBPAXYHJHH
    JMTLNFNUIPZAELTRFPBUNJPNAEODXAXGAOTQEGRMNELLJWOBXAUOTIIWQTYIKTOLXLDGX
    BCPARIWDTBSCTNFXLFNMSVEUTHNOKXMNPODACWTBLWUDBSRFNMSXAHOYZOTAGNFTLWNQK
    TWJOKXNATUAPWGHAGNYEFFAEUASFLTRJKFAMJNJGRHRZAAGNFEHJASEOUFMDIXKPACJIW
    CNURPOSAJ

    NQRLBRGNZJRHNADMSJRLVPOGVNFALPLCOKVCRDTHXWFIBITESOSGAPSKCFMKOONNTXRGA
    KRCTYUKQCVVLNUBGPBXKKJWXMZZFPNGAZKVLWYGGPHGOQEGRGNDKJCGRBBNAIHLRVBWOA
    NSZUPGNQNXNFKIBYBQYAEGFIFHRKSVZGVXTRBKNZVSTOOVFEQONFIGCFSJGJBHSIZWHQB
    FBUYBFFBGRRASGDTVHC

    NNNNNSTQIZETSOOHNQAGHKHWNQEZPQNEBPIFCWXWEZAPNZTVIFUPDPEBDJGKBURPWAXIR
    RAXBYEQJWIRGHSHYRCBYRANGPETNNHQVSJCKDFNINHLVPIFESCZLMCHQRDSTZNDKDUVEW
    WCNDASNPMCWZ

    AUBGWRVULFIMABSIKJXJFNYJTACHFUQRCFKIATHSFEOYVNQMHUBCRTJRCKKIHGSLRQVHR
    SOPXNFTZFIBIBZDAVNFPDOA

    TNCTLAIANCNRDIBRRPHUTQBOSGTSKFIARIFABNPCGKJGMXHKCYIRWQGKWTEAPEDYTHYTK
    RKJUJEXZAPJEGOLPEWLZQPIXLXFJDFSUBKWTAQMXNDDFKJNLLTPVWLOKDBZAFGJSOMGAP
    WNVMRGBFHDBFJOWFUMTIRXIMGKXLTJTPFUANDZBJGMB

    References

    American Cryptogram Association, The ACA and You, page 68, http://www.cryptogram.org/downloads/aca.info/ciphers/Porta.pdf

    Giovan Battista Bellaso, La Cifra del Sig. Giouan Battista Belaso [sic], 1553.

    Paolo Bonavoglia, “Bellaso’s 1552 cipher recovered in Venice,” Cryptologia 43:6 (2019) 459-465, doi.org/10.1080/01611194.2019.1596181

    Paolo Bonavoglia, “Trithemius, Bellaso, Vigenère: Origins of the Polyalphabetic Ciphers,” Proceedings of the 3rd International Conference on Historical Cryptology, 2020, ep.liu.se/ecp/171/007/ecp2020_171_007.pdf, doi.org/10.3384/ecp2020171007

    Augusto Buonafalce, “Bellaso’s Reciprocal Ciphers,” Cryptologia 30:1 (2006) 39-51, doi.org/10.1080/01611190500383581

    Johannes Trithemius, Polygraphiae libri sex, Reichenau: Joannis Haselberg de Aia, 1518, http://www.loc.gov/item/32017914

    Blaise de Vigenère, Traicté des chiffres ou secrètes manières d’escrire, Paris: Abel l’Angelier, 1586, hdl.handle.net/2027/ien.35552000251008, gallica.bnf.fr/ark:/12148/bpt6k1040608n, gallica.bnf.fr/ark:/12148/bpt6k94009991

    NOTE TO HARRY: It should be easy for you to break the ciphertexts, so I don’t need to send the plaintexts.

    #52007
    Madness
    Participant

    Yer krazy. Theez aint hard atall.

    #52016
    Bubble_sort
    Participant

    Finally managed to crack all three of the vigeneres. Here are the MD5 hashes of the keys in alphabetical order with “BUBBLESORT” appended. All the keys are in ALL CAPS, with no spaces in between them, e.g. “XXXXYYYYYBUBBLESORT”

    One key: 9120411aafff6ffaf1d3e14c85f891fe
    Two keys: e059cfc0b0cd0f547b9816f9b92e783f
    Three keys: dc84fddd44c35afcdb3c92a3f993b635

    Thanks Madness, for taking the time to make these ciphers.

    #52019
    Madness
    Participant

    Harry, don’t you think this thread should be pinned to the top of the forum? Of course you do.

    #52020
    The-letter-wriggler
    Participant

    The very short Vigenere
    KEY+TLW
    48b88289ab428e72d1b7e53b302126ac

    PLAINTEXT+TLW
    43437d6536911c67695c367bbccfef38

    Question using Bellos cipher, Key as the Vigenere – respond with same.
    PUWON WNXDA NXMIP IINLT GXDNT NTBHJ SYBPE MOABL TIQ

    #52158
    Madness
    Participant

    @Bubble_sort, well done.

    @TLW, correct for #1. The secret word is not used later. It’s just the name of one of my cats.

    #52283
    Madness
    Participant

    I’m bored. Here is an interesting cipher:

    The Chase cipher is an invention of Pliny Chase from the 1800s. It begins with a 3×10 grid in which
    we place the alphabet, mixed perhaps with a keyword. The remaining four spaces are filled with other
    symbols; we will use the digits 2, 3, 4, 5 (0 and 1 look too much like O and I).

    
      0 1 2 3 4 5 6 7 8 9
    0 K E Y W O R D 2 A 3
    1 B C F G H I J L M 4
    2 N P Q S T U V X Z 5
    

    Notice that the table has headings for the 10 digits along the top, and 0, 1, 2 on the side. These are the
    coordinates of each character in the grid.

    We take our secret message:

    THIS MESSAGE WAS ENCRYPTED WITH A CHASE CIPHER

    We need to decide on a period. We can take the entire message at one go, or break it into words, or
    break it into blocks of the same length. For security, we should either use the entire message at once or
    use blocks whose lengths are all the same. For this example, we take blocks of length five, and pad the
    last block.

    THISM ESSAG EWASE NCRYP TEDWI THACH ASECI PHERX

    For each block, we fractionate by writing the coordinates of the letters in two rows, like this:

    
    THISM
    21121
    44538
    

    We take the bottom row and treat it like an integer; in our case, the integer is 44538. Then we perform
    some mathematical operation on that integer. Here there is some flexibility, but both parties to the
    message must agree on what operation to use. The only requirement is that it must be reversible, so that
    the recipient can decipher the message. For example, we might multiply by 7. Our new set of
    coordinates is

    
    021121
    311766
    

    Notice that we add a zero to the beginning of the upper row, so that both rows have the same length.
    We could add any of 0, 1, or 2, and should choose randomly, for security. The new coordinates are
    converted back into characters, according to the table.

    
    021121
    311766
    WPCLVJ
    

    One possibility for the full ciphertext is

    WPCLVJ K3SVAC B3DAP2 BPBDOX Q5EOOI SPGD4M UAPABI B54K35

    The Chase cipher is very flexible in how it is set up. The length of the blocks can be changed, as
    can the mathematical operation used in the enciphering. With another choice of operation, such as
    taking the first few digits of the logarithm after the decimal point, the blocks in the ciphertext can be
    the same length as the blocks in the plaintext, rather than requiring the addition of an extra digit, as in
    our example.

    References

    Pliny Earle Chase, “Mathematical Holocryptic Cyphers,” The Mathematical Monthly 1:6 (1859) 194-196,
    http://books.google.com/books?id=SVNLAAAAMAAJ&pg=PA194

    David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
    revised and updated 1996, pages 203-204.

    Challenge

    This ciphertext was encrypted using multiplication by 7. The leading digit for the top row was always
    chosen randomly. Plaintext blocks are 5 letters; ciphertext blocks are 6. I have no idea if it is
    possible to break it. If you do it, please report how. All glory to the one who succeeds.

    U5EFA3 KEBPU4 AVMIJM KIGBJU UOHKI3 2UUIFE 2AHIUP WTORBU UUJAK4 V5EFA3 2AJTMA DXXLBY
    MOIFMC BUTOJM DBTPUP V2BGKI IHQTOR NKODQI DSSGBG ZCALQI UIFMGS NCHTAO GGINIS VOHPIO
    ZLIPAR NKODQI ASWFAS JUTAHY TBGNTH DQTBAG GUENJB AEB2NI YJSTBU XTRIQI V2FUBY KEFUWI
    AGBPLY JOIG2F DUBINI NRATVM GUGTIF NAJTOH MRAVMA NCBMTR ZOTWHE NAHMSA IQIAYG GTIKIG
    VK2PAG GSTBBG SYTNTH VIFUIE WLRUFU WSTPTS ALZIGE 2TRUU4 MIPJUU SENKIG VKINIS GBLAIF
    DMNTSL SZIJIG DBMAIF 2AIGDL DWAPTA ZMIVMA JAOTWF OMAHMS WUQINI NBTUHM 2NWREM VITRLM
    GPTHMG YINDOT MJDBOE BIWURF GT2COO GHIJFU 2JBUNT VI5INI 2RATSA GNIADA MGJJTY U4OIFS
    WOEMJ4 IBTUHM NPLIWU SQINLY GLPCJT YHHTKE NAHMMG AF4OIF SWOCOO WGUQQI AVCLWI IK52NI
    IRATSA JPE3EI BMBAHM VEBOLM GUSEKJ ZIVMWU OOLIKT YHNUQM WNLIKT YHJVIF DUIET4 MAIGBG
    NAIHIF IUOONF FIUQ2F AUIFAS MUTAGD GBPL2F IAJBPI DZJIOK AWTFIG 2CQIAS YIHRFU TSTKEA
    NBKIPI NK4MGD MIGDLS WAK5IF ITRTBU XOIVUR SBHEMM VOQEUP AIBBCD OOLMMC BOEOWU 2JIUQY
    TLPCJT JH2KEO THDQIA VMPIMM GLPLIS F4LOCD 2POWIA FYT5IF BEARUI DVINIP ZUOSTH DVINCB
    YEHDSA MGFINI GDRTAG VFEACD ASMGFM WFUBIF NAH5IS GFBMUF DUWIUY GLPCNO WMOFUS ZIGURE
    KLMBUE AIBKIG ZISMGD TFCEMG TEIBKT YPIV4T UIFBOC WUQIFA VETGBG WTMTDH ITAOIF MIKNIF
    SUBUNC KISV5I ORJT2E GLQIOB TUEIEA 2BKIPI ASMGFM TPAEHL AZLUNC ZISV5I MALBCI 2JUGKI
    2HVMMG AFINEE NTBFMG MEOBOR TLJEMU YJTGOT VGESTO AMNJTM TFUWLM WNLEME BLILAG ODO5IF
    ZEARUI ASMGFM WNCCEH ADSMGD FINLFC WOSTHS SMGFIF ZEDRUI YHFEAC SDWXXV

    #52285
    Cribbage
    Participant

    First Vigenère challenge – given the plaintext, I am not sure which answer to put here, so I have gone for the actual keyword (+ CRIBBAGE):
    8065efc249b6c537300e8e2103a669e5

    #52284
    Cribbage
    Participant

    Second Vigenère puzzle (both keywords in capital letters + CRIBBAGE): 72eb46e066ceb42a9a631813ec6966ba

    #52273
    Cribbage
    Participant

    The three keys for the third Vigenère: all caps, alphabetical order, no spaces / commas etc. and CRIBBAGE added on the end >>> MD5: 3ad2cc8f4ef7ae053aa784310f13c28f

    No idea if I went about this in the best way: I generated the monster key first, and then had fun breaking that down into 3 keys.

    #52294
    Madness
    Participant

    @Cribbage, all correct; well done. For #3, your method is the same way I do them.

    #52300
    Upsidedown
    Participant

    md5 of plaintext + UPSIDEDOWN: e813d8388b44eca3aa2b92007230ca3f

    #52301
    Upsidedown
    Participant

    I should have said my last post was for the Chase cipher.

    #52317
    Madness
    Participant

    All glory to Upsidedown!
    Did you do a dictionary attack?

Viewing 15 posts - 1 through 15 (of 22 total)
  • You must be logged in to reply to this topic.